
FastReport .NET for Blazor
Version 2021.2 Beta

Presenting FastReport.Web.Blazor package with the components to be embedded in your web
application. This library is based on the Blazor Server technology (server-side), and means that all
operations will be performed on the server-side, which will then transfer the application is ready to
display.

The minimum target framework at the moment is .Net Core 3.1 to ensure the highest possible
compatibility with the latest LTS (long-term support) version. Also, most users have this version and
it is compatible with the latest .NET 5 framework (within this package).

Preflight Preparation
To use FastReport.Web.Blazor, you need to add a reference in your project file (csproj)
PackageReference specifying the id of this package and the FastReport.Core package (versions
may differ):

<ItemGroup>

<PackageReference Include="FastReport.Core" Version="2021.2.11-demo"/>

<PackageReference Include="FastReport.Web.Blazor" Version="2021.2.11-demo"/>

</ItemGroup>

Then, to simplify naming, we recommend adding the following namespaces to your project's
imports (_Imports.razor file):

@using FastReport.Web

@using FastReport.Web.Blazor

@using FastReport.Web.Blazor.Components

@using FastReport.Web.Blazor.Components.Internal

In fact, just adding FastReport.Web.Blazor.Components may be enough, however, for some cases,
you may need other namespaces as well. Also, some components are likely to move within these
namespaces during the beta version.

In the configurator of your web application, you need to call the UseFastReport method with an
optional lambda expression for setting FastReportOptions. Also, for some built-in common styles
and SVG images of icons in Toolbar and Tab to work, you need to use the UseStaticFiles call (if
you are not going to use Toolbar and Tabs, the UseStaticFiles call to use this package is optional):

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

// ...

app.UseStaticFiles();

// ...

1

https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=aspnetcore-5.0#blazor-server


app.UseFastReport();

}

Description of built-in components
The following is a description of the components included in FastReport.Web.Blazor. We do not
recommend using components other than WebReportContainer, because they can be unstable
outside of the standard component tree. However, to fine-tune the rendering, you may need to use
other components.

WebReportContainer
The main and most versatile Blazor component that performs WebReport rendering is
<WebReportContainer/>. It is located in the namespace FastReport.Web.Blazor.Components.
The only parameter it takes is an object of the WebReport class. This means that to use this
component, you must create an object of the WebReport class, assign it a Report, other necessary
parameters, and pass this object to the WebReportContainer parameters.

Example:

<WebReportContainer WebReport="@UserWebReport" />

@code {

public WebReport UserWebReport { get; set; }

protected override void OnParametersSet()

{

var report = Report.FromFile(

Path.Combine(

directory,

“My report.frx”));

// Registers the application dataset

Report.RegisterData(DataSet, "NorthWind");

UserWebReport = new WebReport();

UserWebReport.Report = Report;

}

}

This component can define a different Mode (Designer, Dialog, and normal Preview) and can
prepare a report, embed default styles and individual styles, display Toolbar, Outline and Tabs,
work with interactive reports, etc.

2



WebReportPreview
It is similar to the previous component but does not take into account the Designer Mode. That is, it
always tries to prepare and render a report.

ReportContainer
It is similar to the previous component but does not include loading WebReport styles (common
and individual for Toolbar/Tabs/Outline).

It is engaged in the preparation of the report and subsequent display together with the Toolbar and
Tabs (if necessary).

When working with any interactivity (clicks on the report / working with dialog forms), it is this
component that is updated.

ReportBody / ExportComponent
The ReportBody calls the Outline rendering (if necessary) and "nests" a component that is the
rendering of the report itself (ExportComponent), which the ReportContainer passes to it. Not
recommended for use.

BlazorExport
The “lowest” level of a component is not a component at all, but BlazorExport itself - a tool for
exporting a prepared report to the RenderTreeBuilder build format. Located in
FastReport.Web.Blazor.Export namespace.

To build this export, you must:

1) Prepare the report;
2) Make sure that this report does not use dialog forms (they are rendered using the

DialogPageComponent and are not covered in this tutorial);
3) Create your own component and explicitly define the construction method in it (call the

override of the BuildRenderTree method)
4) In this build method, create a BlazorExport instance, set the properties it needs, and call

Export passing the following parameters: a Report and a builder instance that is an argument
to this overridden method.

/// Main function

protected override void BuildRenderTree(RenderTreeBuilder builder)

{

using (BlazorExport blazor = new BlazorExport())

{

blazor.StylePrefix = $"fr{WebReport.ID}";

blazor.EmbedPictures = true;

blazor.OnClick += ProcessClick;

blazor.EnableMargins = WebReport.EnableMargins;

3

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.rendering.rendertreebuilder?view=aspnetcore-5.0


blazor.SinglePage = true;

blazor.CurPage = WebReport.CurrentPageIndex;

blazor.Export(myReport, builder);

}

}

Online Designer
At the moment, Online Designer can work in the iframe element using javascript and it is fully
compatible with the Online Designer assembly for Core, however, the Preview call does not work
yet.

To use only the designer's capabilities, you can call the <IFrameDesigner/> component passing it
the WebReport parameter with the configured Report property and the optional DesignerLocale
and DesignerPath:

<IFrameDesigner WebReport="CurrentWebReport" />

However, we remind you that the WebReportContainer component understands which Mode it is
currently working with and it is not at all necessary to call IFrameDesigner in this form.

Setting up common styles and SVG
Unlike FastReport.Web for Core, SVG images for Toolbar and Tabs, as well as some general
display styles of Tabs, Outline, etc. have been moved to staticWebAssets for possible
customization in your web application (changing colors, sizes, replacing images).

These resources are located in your local storage. At the time of development/assembly of your
application, they are located at:
{UserName}/.nuget/packages/fastreport.web.blazor/{version}/staticwebassets

At the time of publishing your web application (dotnet publish), these resources are copied to the
directory:
wwwroot/_content/FastReport.Web.Blazor

Demo project
You can find a project for demonstrating work with the FastReport.Web.Blazor package on our
GitHub. An example of using the WebReportContainer is in the custom component under
Pages/Index.razor and Pages/Index.razor.cs.

4

https://github.com/FastReports/FastReport.Blazor.Demo
https://github.com/FastReports/FastReport.Blazor.Demo

